
Demonstrationes Novae De Resistentia Solidorum
Leibniz (tr. Marc Gasser)

Mechanics seems to have two parts: one concerned with the power of acting or
moving, the other with the power of being acted upon or resisting, or with the
firmness of bodies. Few have investigated the latter in much depth. Archimedes,
who alone among the ancients worked on the geometry in mechanics, didn’t
touch upon this part. Since Archimedes almost nothing was achieved in me-
chanical geometry until Galileo, who, equipped with a discerning judgment
and a strong grasp of the geometry of interiors, first put forth the limits of the
science, and began to relate the resistance of solids to geometrical laws. And
even though he didn’t handle this matter or topics surrounding the motion of
projectiles exactly, relying on insufficiently certain hypotheses, he nonetheless
argued correctly from the foundations he set down.

What he has in mind is the resistance of beams which are fixed to ramparts
or walls. In figures 1 and 2, let the beam ABC be fixed perpendicular to the 320
wall or support DE. Let AC equal AB. In figure 1, let there be hung from C
the weight F which could precisely tear off a horizontal beam from the wall
once erected; and in figure 2, the weight G which could precisely tear off a
vertical beam from the horizontal support (I’ll call the first of these “breaking
off crosswise [transverse abrumpere]," the second “tearing off perpendicularly
[directe evellere]"). According to Galileo, the weight F will be half of the weight
G, provided that the solid be fully rigid—i.e. incapable of any bending—and that
the weight of the beam itself be set aside or already included in the weight which
was hung. Indeed, AB and AC are equal, so the weight F in fig. 1 will incur the
same resistance in point B it would if considered perpendicularly, as in fig. 2.
Hence let the resistance at point B in either figure be represented by BK, so that
the resistance in point H in fig. 2 will be represented by HL, which is equal to
BK, because the resistance of all points in fig. 2 is the same. The resistance of the
same point H in fig. 1 will be represented by HM, added as an ordinate to the
triangle ABK, because it is to the resistance of B as AH is to AB, from the nature
of the lever. And as we do the same thing we did with H with any other point
between A and B, the square BC will be drawn in order to represent resistance
in fig. 2, and the triangle ABK in order to represent resistance in fig. 1, which
is half the square. Thus the weight F, if it’s assumed to be precisely equal to
the resistance in fig. 1, so that adding even the smallest weight would exceed it,



will be half the weight of G (which is precisely equal to the resistance in fig. 2).
And the power of breaking off crosswise will be half the power of tearing off
perpendicularly (we’ll soon find that it’s really not half, but a third). Whence
many useful conclusions can be deduced.

But Paulus Würzius, who’s famous for his first-rank military distinctions
and his fairly recent exploits and who also understands these studies very well,
has often tried to test these thoughts of Galileo and others of its kind, undertak-
ing many experiments. But his conclusions have hardly yielded any success: I
have this from Cl. Blondellus, distinguished in these and other studies, recently
appointed mathematics teacher of the most serene dauphin, and director of the
Architectonic Academy, who developed the same argument and was familiar
with Würzius. But Cl. Mariottus of the Regia Academy, clearly excellent on
optics and mechanics, also discovered after running experiments that a much
lesser weight F was sufficient to break off the beam than what Galileo wanted. 321

The reason for this must be that he considered a perfectly rigid beam, which
would be broken off in a single instant once its resistance has become excessive,
when all the bodies we have the opportunity to handle yield to some extent
before they can be torn off. Observing this, Cl. Mariollus inferred by a clever
calculation that the weight F should be about a quarter of the weight G. But
since then I’ve had the chance to consider the matter more deeply and examine
it according to the laws of geometry, and I’ve elicited the true proportions at
last and demonstrated among others that the weight F will be a third of the
weight G, and therefore that the firmness of bodies resisting rupture is one and
a half times less than Galileo wanted.

To see this, one must know before anything else that two bodies adhering
to each other are not mutually torn apart as wholes in a single brief instant.
This can be seen by the example of a staff which twists before it shatters, and
the example of strings, which stretch out before they break; this bend of the
staff is a sort of expansion in the arch of its surface. It follows from the nature
of sound that nothing is so rigid that it wouldn’t still be bent by light pressure,
which is a kind of tremor, or a back-and-forth bending of the sounding part of
the body—although to the extent that the return to normal is more prompt and
less perceptible, and the sound more sharp, to that extent the trembling bits are
shorter and more tense, and constitute a more solid body. The long and slender
filaments of glass show that it’s pliant; the Florentine experiments show how
sufficiently dense glass is contracted by the cold. Indeed we learn from the senses
alone that parts of plants and animals are in some way like textiles, composed
out of various entwined filaments. Minerals and metals too, which were frozen



after having been fluids, now have tenacity, and are drawn together in threads,
extended with a hammer, and come to adhere in fusion. So let’s now reason as
though parts of bodies are connected by certain fibers, and understand the beam
BC to be bound to the wall or support DE by many braids of fibers in points A,
H, B, and the other countless intermediate points. Once the weight F has been
hung, the beam will be moved a bit around the fulcrum A, as in fig. 3, and the
point B of the beam, separating from the wall from point 1B, on the wall 1B,
will arrive at point 2B, away from the wall, carrying with it the fiber with which
it is tied to the wall, and will stretch this fiber like a chord, or extend beyond
its natural state into the line 1B2B. In the same manner point H will stretch
its fiber into 1H2H, which lines, although they’re actually imperceptible, have
been made visible for the sake of exposition. 322

The line of the 1H2H fiber will resist less pull than the 1B2B fiber, the
amount doubling with the distance from A, or out of the doubled extremity
from the posited distance. Indeed,

(1) the weight in C which would be needed to stretch the fiber 1H2H as
much as the fiber 1B2B would be less than the weight required to stretch
the fiber 1B2B that amount. The ratio would be AH:AB; for instance if
AH is a third of AB then the weight in C which is able to extend only the
1H2H fiber in such a way that it becomes equal to 1B2B will be a third of
the weight extending only the 1B2B fiber. Also,

(2) when both fibers are extended at the same tie by the weight hung at C,
surely the fiber 1H2H isn’t as tense as the fiber 1B2B, but much less, again
in an AH:AB ratio. And so (from the hypothesis (confirmed indepen-
dently) that extensions are proportional to the forces stretching them) to
stretch it we will only need a third of the weight that would have been
necessary to stretch 1B2B; i.e. a third of a third of the weight stretching
1B2B, i.e. a ninth thereof.

Thus in general, in the simultaneous tension of all the fibers emerging towards
whichever point, the resistances at any given point will be in twice the ratio
of the posited distances from the base of the fulcrum, or the center or axis of
balance; i.e. the resistance in H will be to the resistance in B as the square AH is
to the square AB. Hence if we let the weight F in fig. 3 be the parabolic weight
NRSQN, hung freely from C, in which the height NR is equal to the base RS (as
AB is equal to AC), and if we add the proportionals as ordinates of the heights



of the square—if PQ is to RS as the square NP is to the square NR—then assum-
ing the base RS represents the resistance in B, the ordinate PQ will represent
the resistance in H. If, of course, the heights NP, NR are proportional to the
corresponding heights AH, AB. Clearly the entire concave parabolic trilineum
NRSQN will represent the resistance of the entire line AB. If, of course, the
beam ABC is pushed down by the added weight F crosswise [transversim], in
the manner of a lever. And the square RNTS circumscribed to this parabolic tri-
lineum would have represented the perpendicular resistance [resistentia directa]
of the line AB, if, of course, the beam had been pulled directly from the wall,
as in fig. 2. Indeed because AB and AC are equal, the crosswise resistance [re-
sistentia transversa] of point B will be the same as the perpendicular resistance,
obviously represented by RS in fig. 3: if the beam is pulled out perpendicu-
larly (as in fig. 2) the resistance is the same at all points, so the perpendicular 323
resistance at point H will be PV, which is equal to RS. And proceeding in this
manner with the rest, the square RT will be completed, which when done will
thus be thrice the inscribed parabolic concave trilineum, as NRSQN surely is,
and the perpendicular resistance of any straight line (like AB) will thrice the
crosswise resistance. QED.

Moreover, however great the length of the beam or the distance of the ap-
pended weight from the wall (which thus far we’re assumed equal to the height
of the beam), it will easily be possible to determine the weight sufficient to
break off the beam: so if the weight G can tear off the beam perpendicularly in
fig. 4, the weight F will indeed be a third the weight of G (provided AC is equal
to AB); but if the weight I is hung from K, and AK is four times AB or AC, the
weight I will be a quarter of F, and a twelfth of G. Thus in general the weight
tearing off perpendicularly a perpendicular beam will be to the weight breaking
off crosswise, in the manner of a lever, as the length of the lever is to the third
of the beam’s density [crassities].

Until now we’ve considered the beam itself as though it were weightless, but
if the weight of the beam should come into account, it will be just as though
the weight I of an equal beam had been suspended from K, the center of gravity
of this beam. It will also be possible that the beam be broken by its weight in
some place—like G in figure 5—between the wall AB and the end of the beam
C, when, of course, the gravitation [gravitatio] of the FGCF portion, balanced
from the point of rest G, has a greater ratio with respect to the resistance in FG
than the gravitation of the entire beam BAC from the point of rest AD has with
respect to the resistance in AB.

Yet it might be asked what kind of line BFC should be in order that the



resistances be proportional to the corresponding gravitations, and the beam
resist equally everywhere: it will be found to be a parabolic one. Indeed the
resistance in FG is to the resistance in BA as the parabolic concave trilineum
FGHF is to the other such trilineum BAEB, if the base of the trilineum is equal
to its height (as is clear from the above) or if it’s as the square FG is to the
square BA (because the trilineum is such that it’s the third of the circumscribed
square). But the moment [momentum] or gravitation of any FGCF portion
balanced from G is to the moment of the entire beam BACB balanced from A
as the square FG is to the square BA, as can easily be shown from the nature of
the parabola (for the portions CGFC and CABC are like the cubes from CG,
CA. And assuming G3 and A2 are a quarter of these (CG and CA), the distances
of the centers of gravity of the CGFC and CABC portions from the points of
rest or centers of balance G and A will be as well, and the moments of the 324
said portions are as follows from the portions with respect to their distances,
or in the combined sum of the portions or cubes from CG and CA and of
the distances, which are as CG and CA themselves.) Hence the resistances are
proportional to the moments or forces [vires], the proportion of some moment
to its resistance is everywhere the same, and indeed the firmness [firmitas] by
which the beam everywhere resists its own weight will also be equal. Therefore
let the beam run however long you can imagine: if it doesn’t break under its
weight near the wall, it won’t break anywhere else.

Furthermore if the beam CABC is a prismatic parabolic third of the CDBA
solid [plena], so that a third of the weight has been removed from that part and
the distance of the center of gravity has been drawn back from AG to its half A2,
the parabolic beam will be six times firmer than the plane. But if the force of the
beam is taken to have negligible weight, as of water or wind, or something else
distributed equally across the whole length of the beam, as if in fig. 6 the beam
ABD running out of the wall should support the strain of soil thrown upon it,
or of grain or some other material, it will be possible for it to be triangular, and
the line AD straight, and the beam will resist everywhere equally to the weight
placed upon it, since if it doesn’t break in the wall it’s impossible for it to break
anywhere else: indeed from the known laws of mechanics, the moment of the
weight pressing upon GD is to the moment of the weight pressing upon BG as
the square GD is to the square BD, or as the square GF is to the square BA; i.e. as
the resistance at GF is to the resistance at BA: so whether the placed weight is
under consideration or the shape of the beam, I’m just as able to provide a shape
resisting equally.

Thus far we’ve only considered a beam the surface of which adheres to a wall



or support and is everywhere of equal height, so that it sufficed to assume BA
straight. But because the shared surface of the beam and wall can vary, we offer
a general rule to determine its resistance geometrically, a special case of which
will lead anyone who has the time to draw out its consequences to discover
many highly elegant theorems.

In this way, let ABHC be a beam, as in fig. 7, which intersects the support
DE in a plane ABH of any given shape. Let that plane be dragged horizontally
and let there be drawn another plane equal to it and similar in the horizontal
plane, and let AGH be similarly placed. From the point G, construct the lowest
of the horizontals, most distant from AH (the point B corresponds to this),
and GF (equal to BF) perpendicular to AH. Let the cylindrical body whose
base or section of whatever sort is parallel to the horizontal plane be similar 325
and equal to AGH, and GI be perpendicular to its height and equal to FG or
BF. One can call this body a cylinder. Construct through an indefinite tangent
KIL parallel to AH. Finally let a plane cross AH and KL, which will make a 45
degree angle with the horizontal plane and will cut the cylindrical body in two
parts, of which the one where GI falls, which in the figure is the secant above
the plane, is called an ungula by geometers. I claim that this ungula, cut back
from the cylinder and serving as a lever whose fulcrum lies in AH, is equal to
or represents the resistance of the beam ABHC to being broken off crosswise in
AHB, provided the weight of the cylinder itself is enough to tear off that same
beam perpendicularly from the wall.

Though it’s helpful to consider the ungula in the manner of a lever, so that
we may consider completely the weight representing resistance let the ungula
be hung from the point M, or from FM, the distance from the wall to the
center of gravity of the ungula; it will thus be precisely equal to the crosswise
resistance, if the whole cylinder is equal to the perpendicular. Therefore when
we ask whether and where some solid should break, it won’t be difficult to
give a geometrical assessment. For it will come out the same whether it’s the
strongest point or not: wherever the moment of the ungula, or what’s made of
the ungula by drawing it out until its center of gravity, will have the least ratio
to the power attempting to break it there away from the vertical plane in which
lies the axis of balance of everything: therefore by these few considerations this
whole matter is brought back to pure geometry, which is especially lacking in
physics and mechanics.

Supplement: if someone asked for some conoeide [cf. Errata] equal to this
resistance, a parabolic tube will be satisfactory. In fig. 8, let AEC be a parabolic
line whose vertex A is tangent to the vertex AB, and rotate the parabolic line as
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you would around an axis. This will give you the AECGDFA tube. When the
other AEHFA portion of the tube is placed, since the resistances of the bases or
circles CGD, EHF are as the cubes of the diameters CD, EF it will be found that
the moments of the portions AECGDFA and AEHFA are also like the cubes
CD, EF, by the nature of the parabola.


